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THE STABILITY OF GENERALIZED STEADY MOTION'[" 

A. S. A N D R E Y E V  a n d  C. R I S I T O  

Ul'yanovsk and Parma, Italy 

(Recefi,ed 20 November 2001) 

The influence of  dissipative forces on the stability of the generalized steady motion of a mechanical system with t ime-dependent 
constraints is investigated. As a preliminary, the problem of the limiting behaviour of solutions of a non-autonomous system is 
solved on the assumption that m first integrals and a function that decreases along every solution of  the system are known. As 
an example, the motion of a gyroscope in gimbals. © 2002 Elsevier Science Ltd. All rights reserved. 

The stability of the steady motions of a mechanical system is one of the classical problems of stability 
theory. It has been investigated in the publications of various scholars ([1-9] and others); a detailed 
analysis of these may be found in [10, 11]. 

In the general case, mechanical systems with time-dependent constraints, unlike systems with time- 
independent constraints, admit of generalized steady motions, in which the cyclic velocities are functions 
of time [12, 13]. The problem of the stability of generalized steady motion has been investigated before 
[12-16] (some of the results obtained were included in [17]) assuming the presence of dissipative forces, 
with the dissipation dependent on positional velocities; however, the influence of these forces has not 
been fully taken into consideration. 

1. F I R S T  I N T E G R A L S  OF L I M I T  SYSTEMS 

Consider a system whose motion is described by the following differential equations 

k = X(t,x), X(t,0)---0 (1.1) 

where x = (x t ,  x2  . . . . .  Xn) '  is a vector in an n-dimensional real space R n with norm II x II z = + + . . .  
+ x 2 (the prime denotes transposition), and X(t, x) is a vector-valued function defined and continuous 
in a domain R ÷ x F, R ÷ = [0, +oo] being the real half-line and F C R" an open domain containing the 
point x = 0. 

We shall assume that the vector-valued function X(t, x) satisfies a Lipschitz condition: for any compact 
set K C F a number L = L(K) exists, such that 

II X(t, x 2 ) -  X(t, xl) II ~<L II x: - x  I II 

for any t ~ R + and any points Xl, x2 ~ K. 
Hence it follows that for every initial condition X(to) = Xo, (to, Xo) ~ R ÷ × F, a unique solution 

x = x(t, to, Xo) exists, defined in a maximum interval [to, 13], such that x(t, to, Xo) ---> ~F as t ---> [3. 
In addition, system (1.1) is precompact [18]: for any sequence tk ~ oo, there is a subsequence 

tkt ---> +oo relative to which the following limit system of equations exists: 

d t 
~k=X*(t,x), X*(t,x)= lim S X ( t k t + x , x ) d z  

d t  I ~  0 
(1.2) 

The function X* : R x F --)Rn, in accordance with a standard construction of the topological dynamics 
of system (1.1) [18], is such that for every point (to, Xo) ~ R x F the solution x = x*(t, to, Xo) of system 
(1.2) is unique. 

Having defined the limit systems (1.2), we can define the following quasi-invariance property of the 
positive limit set co+(t0, Xo) of a solution x = x(t, to, Xo) of system (1.1) relative to the family of limit 
systems (1.2). 
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Theorem 1.1 [18, 19]. Let  x = x(t, t 0, x0) be a solution of  system (1.1) defined and bounded  by some 
compact  set K C F, x(t, t 0, x0) ~ K for  all t t> t 0. 

Then  for  every limit point  p ~ o)+(t0, x0) a limit system x = X*(t, x) exists, and the solution of  this 
system x = x*(t), --~ < t < +oo is such that  

x * ( 0 ) = p ,  x*(t)~to+(t0,x0),  V t e R  

A first integral of  system (1.1) [13, 17] is a function U : R ÷ x F ---> R which is continuous,  satisfies a 
Lipschitz condi t ion locally with respect  to x and is constant  along every solution of  system (1.1): 

U(t ,x( t ,  to ,Xo))=Co =const ,  Vt>~to 

The  upper  right derivative o f  this function along trajectories of  system (1.1) is equal  to zero: 
O+(U(t ,  x) = 0. 

Le t  us assume that  we know m(1 ~< m < n) independen t  first integrals of  system (1.1): 

U(t ,x)  = c, U(t,O)----O (1.3) 

where  c = (cl, c2 . . . . .  cm)' is a vec tor  in the m-dimensional  space R m with norm [[ c 112 = c~ + . . .  +c~  and 
U: R ÷ x F ---> R m is a continuous vector-valued function satisfying a Lipschitz condition locally with respect 
to x. 

Le t  us assume, in addition, that the function U(t, x) is bounded  and uniformly continuous with respect 
to (t, x) on every compact  set K C F, that is, it satisfies the following condition: for  every K C F and 
any e > 0 numbers  r = r(K) and 6 = 6(e, K) > 0 exist such that 

II U(t,x)II~<r, II U ( t 2 , x 2 ) - U ( h , x j ) l l < e  (1.4) 

for  any (t, x), (tl, Xl) and (t2, x2):e R + x K such that  

It 2 - t  t 1<8, IIx2 -x111<8 

U n d e r  these conditions, the family of  translations 

{Ux(t,x) = U(x+  t,x), x ~ R  +} 

is precompact  in some function space Fu of  the functions U: R + × F --> R m with the open compact  topology 
[19]. Hence  it follows, in particular,  that for  any sequence t~ --> +oo a subsequence {tkt} C {tk} and a 
function U* ~ F,, exist, such that the sequence of  functions Ut(t, x) = U(tkl + t, x) converges to U*(t, 
x) uniformly with respect  to (t, x) s [-T, T] × K for  every T/>  0 and every K C F. 

Without  significant loss of  generali ty,we may assume that  every limit function U*(t, x) satisfies a 
Lipschitz condit ion locally with respect  to x, so that we can define the derivative D+U*(t ,  x) along 
trajectories of  system (1.2). 

Le t  
= X*(/ ,x) (1.5) 

be some limit system defined by a sequence tk ---> +oo. Suitably choosing a subsequence {tkt} C (tk}, we 
can find the limit function U*(t, x) and form the limit pair  (X*, U*). 

L e m m a .  Let  (1.3) be a collection of  first integrals of  system (1.1) and let (X*, U*) be a limit pair. Then  
U*(t, x) = c is a collection o f m  first integrals o f  the system ~ = X*(t, x). 

Proof. Let (X*, U*) be a limit pair defined by a sequence tk --~ +~. Thus, as k --~ ~o the following convergences 
will hold 

Xk (t,x) = X(t k +t,x)---> X* (t ,x),Uk(t ,x) = U(t k + t,x)---> U*(t,x) 

and moreover the last one is uniform with respect to (t, x) ~ [-T, T] × K for every T I> 0 and compact set 
K C F .  

Let x = x*(t), x*(0) = x0 ~ F, ct < t < 13, be some solution of limit system (1.5). By the construction of such a 
system, if x = x(t, tk, Xo) are solutions of system (1.1) and we form the sequence {xk(t) = X(tk + t, tk, X0)}, then 
xk(t) ---> x*(t) uniformly with respect to t ~ [Ylk, Y2~] C (a, 13) (Ylk ---> a, Y2k "--> 13) as k --~ o~ [18]. 

Along every such solution 
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U(t,x(t, tk,Xo)) = e k = U(tk,x(t k ,t k,x0)) = U(tk,x0) 

Accordingly, we find that 

Uk(t,xk(t)) = U(t k +t, xk(t)) = U(t k +t,x(t k +t, tk,Xo)) = c k = U(tk,Xo) 

Letting k ---) oo, we deduce from this that 

U*(t,x*(t)) = e 0 = U*(O, x0), Vt~(~,[3) 

This proves the lemma. 

333 

2. T H E  L I M I T I N G  B E H A V I O U R  OF T H E  M O T I O N S  
OF A S Y S T E M  W I T H  F I R S T  I N T E G R A L S  

We know [20] that a positive-definite function 

= ~(U I (t, x) ..... U,, (t, x)), q~(0) = 0 

exists if and only if the function Uo(t, x) = 11U(t, x) 11 is positive-definite. If the function Uo(t, x) is only 
non-negative, sufficient conditions for the trivial solution of system (1.1) to be stable have been 
established [12-14], on the assumption that an additional function V = V(t, x) exists which decreases 
along solutions of system (1.1). 

Let  us consider the problem of investigating the limiting behaviour of the solutions of system (1.3) 
on assumptions similar to those of the theorems in [14], on the basis of limit systems and limit Lyapunov 
functions [21]. 

For convenience, we will let h : R + ~ R + denote a Hahn function, that is, a function such that 
h(O) = O, h(a) is continuous and strictly monotonically increasing. 

Let  us assume that for system (1.1) there are two known functions U : R ÷ x F --) R ÷, U(t, 0) - 0 and 
V: R ÷ x F ~ R, V(t, 0) - 0, of which the first is a first integral and the second is continuous, bounded 
below and such that V(t, x) I> m(K) for all (t, x) e R ÷ x K, K C F, and in addition satisfies a Lipschitz 
condition locally with respect to x and its derivative satisfies an estimate 

D+V(t,x)~ - W(t,x), V(t,x)ER + ×1" 

where the function W : R + x F ~ R, W(t, O) - 0 satisfies a Lipschitz condition 

I W(t, x 2 ) - W ( t ,  xl)l<~lllx2 -xl II; /=I (K) ,  x l , x 2 e K  

on every compact set K C F. 
The family of translations {W~(t, x) = W('c + t, x)} will be precompact in some function space F w of 

functions W* : R x F ~ R [18, 21], so that for any sequence tk ~ +oo a subsequence {tkt} C {tk} exists 
such that the sequence Wt(t, x) = W(tkt + t, x) is convergent in Fw to some function W*(t, x). 

A limit system (1.5) for (1.1) and functions U*(t, x) and W*(t, x) that are limits for U(t, x) and W(t, 
x), respectively, form a limit triad (X*, U*, 14:*) if they are defined by the same sequence tk --) +oo. 

Let (X*, U*, W*) be a limit triad. Let M(c) denote the set of points y ~ F for each of which the solution 
x = x*(t), x*(0) = y of system (1.5) is contained in the set 

x*(t)~ {U*(t,x) = c = const}0{W*(t,x) = 0}, Vt~ R 

Let  M*(c) be the union of the set M(c) over all limit triads (X*, U*, W*). 

Theorem 2.1. Suppose for system (1.1) a first integral U: R + x F --)R + and functions V, W: R + × F --) 
R exist such that: 

1) max(V(t, x), U(t, x))/> h([[x[[), V(t, x) ~ R + × F, 
2) V+V(t, x) ~< -W(t,  x) ~< 0 for (t, x) ~ R ÷ x F such that V(t, x)/> V(t, x). 
Then the solution x = 0 of system (1.1) is stable. 
Moreover, every solution x(t, to, x0) of system (1.1), bounded by a compact set K C F, along 

which 
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V(t,x(t, to,Xo))>~c o, co=U(to,Xo),  Vt>~to 

comes  unbounded ly  close to the set  {M*(c) : c = Co = const} as t ---> +oo. 

Proof. Tha t  the solution x = 0 is stable was p roved  in [13, 14] (see also [17]). We will p rove  the second 
pa r t  o f  the theorem.  

Le t  x = x(t, to, x0) be a solut ion of  system (1.1) bounded  by a compac t  set  K and such that  
V(t, x(t, to, Xo)) t> U(to, Xo) = Co for  all t I> to. I t  follows f rom condi t ion 2 of  the t h e o r e m  that  a long this 
solut ion 

D+V(t,x(t, to,Xo)<~ - W(t,x(t,  to,Xo))<~O, Vt>~t o 

Le t  p ~ to+(t0, x0), so that  a sequence  tk ---> + ~  exists such that  X(tk, to, x0) ---> p. Choose  a subsequence  
{tkl} C {t k} for  which a limit t r iad (X*, U*, I4,'*) exists. By T h e o r e m  1.1 (see [18]), the sequence  of  
funct ions xt(t) = x(tkl + t, to, x0) converges  uni formly  with respect  to t ~ [-T,  7] ( T  > 0) to a solution 
x = x*(t) o f  system (1.5) with initial condi t ion x*(0) = p. By the l emma,  we have 

U*(t,x*(t)) = c o = const, V t e R  

We have V(t) = V(t, x(t, to, x0)) ---> ca = const  ~ Co (monotonica l ly  decreasing,  it tends to cl)  as 
t ~ +oo. F rom the inequali t ies 

t 

V(tkl + t ) , V(t~t - t) <~ - S W(tkt + "~, x(tkl + '~, to, Xo))dz ~< 0 
- t  

lett ing tta ---> +oo, we deduce  that  

x*(t)E{W*(t ,x)=O}, V t e R  

Thus,  the limit point  p ~ to+(t0, Xo) is conta ined  in the set M(co) cor responding  to the limit tr iad 
(X*, U*, I4/*). Thus,  for  the whole  set  we have to+(t0, Xo) C M*(co), and so x(t, to, Xo) ---> M*(co) as 
t ----~ -I- oo. ~ .  

Corollary. I f  condi t ion 2 of  T h e o r e m  2. 1 is satisfied for  all (t, x) ~ R + x F, then  every solut ion x = x(t, 
to, Xo) of  system (1.1), bounded  by some  compac t  set K C F, will app roach  unbounded ly  close to the 
set  {M*(c) : c = c o = U(to, Xo)} as t ---> +oo. 

Remarks. 1. Let tl ---> +~0 and c ~ R. Define _VT, l(t, c) and l~.l(t, c) as the sets of points x, y a F for each of which 
sequences xt ~ x and Yt ---> Y exist such that, respectively 

lim V(tl+t, xl)=c, lim V(tt+t,yt)=c 
/..~÷oo 1--~+0o 

Then the localization co +(t0, Xo) in the assumptions of Theorem 2.1 and the Corollary may be refined as follows. 
A value c = Cl = const 1> Co exists such that, for every limit point p e to+(t0, x0), the corresponding solution 
x = x*(t), x(0) = p of system (1.5) is such that 

x*(t)¢{V-__I(I,c):c=cl =const~>c0}, Vt~R 

If x(t, to, Xo) is a solution of system (1.1) along which, for some tl I> to, we have V(q, x(q, to, Xo)) < Co, then the 
localization to+(t0, x0) may be represented as follows: for every point p ~ co+(t 0, x0) a solution x = x*(t), x*(0) = 
p of some limit system (1.5) exists such that 

x*ft)E{'Q---I (t,c):c<~co}~{U* (t,x)=co}, VteR 

2. By condition (1.4), the function U = U(t, x) admits of an infinitesimal upper limit. Therefore, if we assume 
in addition that 

I V(t,x)l<~hl(llxll), V(t.x)eR+×F 

then, by the results of [13, 14], the stability of the solution x = 0 in Theorem 2.1 will be uniform. 

The  p r o o f  of  the following t h e o r e m  is ana logous  to tha t  o f  T h e o r e m  2.1. 
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Theorem 2.2. Suppose for system (1.1) a first integral U : R  ÷ × F -->R + and two functions V, W: R + x 
F ~ R exist such that: 

1) the function V(t, x) is positive-definite on the set {U(t, x) = 0}, that is 

V(t,x)>~ hl(llxll), V(t ,x)~ R + x F : U ( t , x ) = 0  

admits of an infinitesimal upper limit, that is 

I v(t ,  x) ~</~(11 x II), V(t, x) ~ R + x r 

and its derivative is such that 

D+V(t,x) <- -W( t ,x )~  < 0 ,  V( t ,x )~R +X F  

2) for every limit triad (X*, U*, W*) the set 

{U ° (t, x) = 0} ~ { W* (t, x) = 0} 

does not contain solutions of system (1.5) other than the trivial one x = 0. 
Then: 
1) the trivial solution x = 0 is uniformly stable and is uniformly attractive for solutions x = x(t, to, 

x0) along which 

U(t, x(t, to, Xo)) = Co = 0 

2) every solution along which U(t, x(t, to, x0)) = Co ~ 0 (where Co is sufficiently small) approaches 
unboundedly close to the set M*(co) as t ~ +~ .  

3. T H E  S T A B I L I T Y  OF G E N E R A L I Z E D  S T E A D Y  M O T I O N  

Consider a mechanical system with time-dependent,  holonomic, ideal constraints, whose position is 
determined by n + m (n I> 1, m i> 1) generalized coordinates q' = (ql, q2 . . . .  , qn) and z' = (zl, z2 . . . . .  
Zm). It is assumed moreover  that ql, q2, -.., qn are positional coordinates, zl, z2 . . . . .  Zm are cyclic 
coordinates and accordingly the Lagrangian has the form 

L(t, q, ¢I, z) = I ~l,A(t, q)¢l + ~I'B( t, q)z + I z'C(t, q)z - ¢l'g(t, q) - ~'f(t, q) - rI(t, q) (3.1) 

where A(t, q) and C(t, q) are positive-definite n × n and m × m matrices, B(t, q) is an n x m 
matrix, g(t, q) and f(t, q) are n × 1 and m × 1 column matrices, and the scalar function 1-I(t, q) 
is the potential energy. Let  us assume that all the functions of the variables (t, q) occurring in (3.1) are 

to and including order  two in the domain R x F0, defined and continuously differentiable up + 
Fo = {q ~ Rn: Ilqll < 130, 0 < 13o ~< +oo} (llqll is the Euclidean norm of a vector q ~ Rn), bounded 
together with all their derivatives for (t, q) s R + x F1, F1 = {q: II q II ~< 131, 0 < I~1 < ~ } ,  a n d  
moreover 

d e t  A ~> ct o, det C I> s 0, det(A - BC -I B') ~> 0t 0 = cons t > 0, V(t, q) ~ R + x F I 

Suppose the system is also subject to generalized forces depending on the positional coordinates, 
Q -- Q(t, q,/!),  which are continuously differentiable in the domain R ~- x Fo x R n and bounded together 
with their derivatives for (t, q,/1) E R + x F1 × F2, F2 = {/1:114 II 0 < 132 < +~}.  

The motion of the system is described by the equations 

d ~L OL d 3L 
= Q ,  - - - -  = 0 ( 3 . 2 )  

dt ~q ~q dt ~z 

Working from these equations, we find cyclic integrals 

~Lla~. = B'(t,q)q + C(t,q)~ - f(t, q) = e (3.3) 



336 A.S.  Andreyev and C. Risito 

where c' = (c 1, 172 . . . .  ¢m) are m arbitrary constants. Solving Eqs (3.3) for i ,  we obtain 

~. = C -I (t, q) (e + f(t, q) - B'(t, q)/I) (3.4) 

The conditions imposed on the functions occurring in (3.3) and (3.4) imply that aL/az and i are 
bounded and uniformly continuous with respect to (t, q,/1, i)  ~ R+ x F1 x F2 x F 3 and (t, q, ~b c) ~ R ÷ 
x F1 x 1"2 x F4, where 

F 3 =17, e R m :llill~< B3, 0<133 <+**} 

I" 4 ={eE R m :llcll~< 134, 0<134 <+~} 

Using relations (3.3) and (3.4), we find a Routh function in the form 

• . ,  a l l  
R = L-z ~[,--c-'~+f-B'q) = R2 + R, - w 

R2(t,q,cl) = l l2~]'Fq, F(t,q) = A - BC-I B" 

R I (t, q, q, e) = E'cl, E(t,q, e) = BC -I (e + f) - g 

W(t, q, c) = FI + 1 / 2(c + f) 'C -1 (c + f) 

Where F is a positive-definite matrix, the function W is known as the reduced potential energy. 
The equations of motion may be expressed in terms of Routh's equations 

aaR2 aR2=_aW_cq aE+o ' ~ - - - o  (3.5) dt ail aq aq a t  dt 

The matrix G is defined by 

G(t,q,e)=aq ~aqJ  

and may be considered as a matrix of linear gyroscopic forces. Unlike a system with time-independent 
constraints, Eqs (3.5) involve additional terms (--0E/at), which may be treated as inertial forces, due to 
the transient nature of the constraints. 

Let us assume that for some (q0, %) ~ F0 x R m and for all t t> to 

3W bE 
(t, q0,e0) +-7-( t ,  q0,e0) = Q(t, q0,0) 

bq Ol 
(3.6) 

Then system (3.5) has a position of relative equilibrium at e = % 

ti = 0, q(t) = q0 (t >/to) (3.7) 

corresponding to which there is a generalized steady motion (GSM) of system (3.2) [13, 14] 

~l(t)=O, q ( t )=qo ,  7.(/)= C-I(t, qo)(Co +f(t ,  qo)) (3.8) 

In this motion, as distinct from steady motion, the cyclic velocities are not constant but vary together 
with the cyclic coordinates, generally as non-linear functions of the latter. 

Let us consider the problem of the limiting behaviour of system (3.2) near a GSM (3.8), using the 
lemma and Theorem 2.2. 

By the conditions imposed on the function L and the generalized forces Q, the equations of motion 
(3.2) will be precompact in their open compact topological representation [19]. The corresponding limit 
equations will be similar in form and may be considered as the equations of motion of some limiting 
mechanical system [21, 22] with Lagrangian 
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* • • ' P  * " " t  * • 

/2 ( t , q , q , z )  = l / 2 q  ,4 ( t , q ) q  + q  B ( t , q ) z  + 1 / 2 z ' C * ( t , q ) i  - ¢ l ' g* ( t ,q )  - 

- p  * * 

- z  f ( t , q ) - H  (t,q) 

(3.9) 

under the action of generalized forces Q*, where, for example 

A*(t,q)= lim A(t+tk,q), Q*(t,q,/l)= lim Q(tk + t, q, /l) 
t k ...~ +o,  t k ...~ - ~  

the convergence being uniform with respect to (t, q,/l)  ~ [0, T] x F 1 × F 2. 
The limit equations have cyclic integrals of the form (3.3) and accordingly one can form a limit Routh 

function R* and limit equations for (3.5) 

dc = o  d 3R~ ~R~_ 3 W * _ G . / I _  +Q*' d'7 (3.10) 
dt ~q Oq ~q 

If the following equalities hold at (90, c0) ~ F0 x R m for all t e R 

/)W* _ _ DE* 
~q (t, q0 ,c0)+--~t  (t, q0,c0) = Q*(t, q0,0) (3.11) 

the system (3.10) has a position of relative equilibrium 

/ l* ( t )  = 0,  q * ( t )  = q o ,  c = Co ( 3 . 1 2 )  

and accordingly we can define a GSM for system (3.9) 

il*(t)=O, q*( t )=~  o, ~*(t)=(C*(t,'qo))-I(Co +f*(t,~o)) (3.13) 

Remark. By Theorem 1.1, the limiting properties of system (3.1) or (3.5) are determined in the general case by 
a whole family of limit systems rather than by one limit system. If solution (3.7) is some position of relative 
equilibrium of system (3.5) for t i> to, then it is the same for every limit system (3.10) for all t e R. The relation 
between initial system (3.1) and limit system (3.9) corresponding to the GSMs (3.8) and (3.13) is defined by 

q*(t)=0, q*(t)=~o=qo, 

lim z(tk +t)= lim C-t(tk +t,qo)(Co +f(tk +t,qo))=~*ft) 
t k - .4 ,~  t k --~-I.~ 

uniformly in t ~ [0, I~] for every 13 ~ R. If there is a perturbed motion of (3.1), (~l(t), Vl(t), z(t)), whose positive limit 
set consists of these limiting GSMs, then we have the following property of attraction of the perturbed motion to 
the GSM (3.8) 

iim ~l(tk +t)=0, lim q(tk +t)=q0 
t k . ~ 4 o o  t k . - ~ 4 . ~  

lim (z(tk +t)--Z(tk +t))=0 
i" k --~ 4-a* 

uniformly in t ~ [0, 13], 13 ~ R. 

Note that, apart from the positions of relative equilibrium (3.7), any of the limit systems (3.10) may 
have other such positions. We shall assume in what follows that for every e = const the set of such 
positions in finite and is the same for every limit system (3.10). 

For convenience, we will introduce a function Wo(t, q, c) and a function ~,: R ÷ --> R ÷ which is bounded, 
uniformly continuous and positive in the mean, so that 

t+13 

Wo(t,q,e)=W(t,q,e)-W(t, qo,eo), S )'(x)dx~>~'0 >0  
I 

for any t E R ÷ and some [3 = const > 0. A function •*(t) which is limiting for ~,(t) will be such that, for 
any t e R, a closed interval [ctl, c~2] C [t, t + [3] exists on which ~,*(t) > 0. 
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Theorem 3.1. Suppose system (3.1) has a GSM (3.8) corresponding to c = Co, and moreover: 
1) the function Wo(t, q, Co) is positive-definite with respect to (q - q0); 
2) the applied forces and constraints are such that 

_ ~ t ( R 2 ( t , q , ( l ) +  Rt(t ,q,  il, e ) ) +  ~ , . . ~- W 0 (t, q, c) + Q (t, q, q)q ~< -y(t)h I (11 q II) ~ 0 

V(t, q, el, c) • R + x { (q,/!, e) :11 q - qo II ~ 8, II q II ~< 5, II c - Co II ~ 8 > 0} 

3) the GSM (3.8) is isolated for c = Co, in such a way that for any rl > 0 an e - e0] ) > 0 exists such 
that 

II~qWo(t,q, co)+~tE(t,q,eo)ll~e, V t ~ t  o , Vqe{0<r l~< l lq -q0 l l  ~<8} 

Then the GSM (3.8) is uniformly stable and is uniformly attractive for perturbed motions with cyclic 
constants c = Co. Every perturbed motion in the stability domain of (3.8) corresponding to a value 
c = c~ ~ Co will approach unboundedly close as t ~ + ~  to one of the GSMs of limit systems corresponding 
to the value c = c~. 

Proof. Setting 
U=l le -c01l  2, V = R2 + W o 

we deduce from the conditions imposed on the system and from conditions 1 and 2 of the theorem that 
when c = Co the function V(t, q,/1, Co) is positive-definite with respect to q - q0 in the neighbourhood 
of the GSM (3.8) 

t V(t,q,cl, C I~  < h2(ll ~1 II + II q - q0 II + It e -  % tl) 

I)(t, q, q, c) ~< -y(t)h 1 (11 q II) ~ 0 

By condition 3'of the theorem, the limit set 

N* = {'/*(t)h I (11 q ID = 0} 

at c = Co does not contain motions of limit systems except for positions of relative equilibrium 

q*(t)=0,  q*(t)=q0, c = c  0 

At c = cl ~ Co, the maximum invariant subset M*(cl) C N is a finite set of positions (3.12), the same 
for every limit system. The desired result now follows from Theorem 2.2 and the Remark. 

Example. Consider the problem of the stability of transient rotations of a gyroscope in gimbals. 
Suppose the stationary axis of rotation O~ of the outer ring of gimbals of a perfectly symmetrical 
gyroscope is vertical, the axis of rotation Ox of the inner ring of the suspension is perpendicular to O~, 
the Oz axis is the axis of rotation of a symmetrical rotor, the centre of gravity of the rotor and the inner 
ring of total mass m lies on the Oz axis with coordinate z0, A = B, C, A1, B1 and C1 are the principal 
moments of inertia of the rotor and the inner ring, respectively, relative to the coordinate system Oxyz, 
andA2 is the moment of inertia of the outer ring about the O~ axis. As independent coordinates defining 
the equilibrium position of this mechanical system we take the traditional Euler angles: ~ - the angle 
of rotation of the outer frame, the angle of precession, 0 - the angle of rotation of the inner frame, the 
angle between Oz and O~, the angle of nutation, and ¢p - the angle of rotation of the rotor about the 
Oz axis relative to the inner ring, the angle of spin [23]. 

Suppose the rotation of the outer ring is governed by a transient law 

¥=llt(t),  [~(t) l<~l, 14t(t) l ~ l ,  ~ ' t ~ 0  

Let us assume that, besides gravity, the system is also subject to forces of viscous friction on the axis 
of the inner ring [24], which create a torque M0 = -7(t)f(0), where y(t) is a function which is integrally 
positive in the mean, f(0) = 0, f(a)a > 0 for a ¢ 0. 
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The system is holonomic, and its Lagrangian is 

L =  2 ( a  + AI)02 + 12 C~02 + Clit(t) c°s 0~° + lz C-~2 (t)c°s2 0 + I(A2,~ + ( a  + BI )sin 2 0+ 

+ C t cos 2 0)~/2 (t) - Mgzo cos0 

The coordinate qo is cyclic, the corresponding cyclic integral being 

C((o + ~(t) cos0) = c = const 

Ignoring % we find the Routh function to be 

R 2 -  W, R2(O)=2(A+AI)02, W(t,O,c)= MgzocosO-c~( t )cosO-  R= 

/ ( a + B l ) , 2 s i n 2 0 _ /  l c 2 I m2,2(t) C1~2c°s20+2 C 2 

The relative equilibrium positions of the reduced system are determined from the equation 

~W / ~O = - sin O(cfF(t) - Mgzo + D~ 2 (t) cos O) = 0, D = Cj - A - B I 

If  ~ ( t )  ;~ const, the only solutions of this equation are 0 = 0 and 0 = n, to the first of which there 
corresponds a GSM 

0=0 ,  0 = 0 ,  ( p = c / C - ~ ( t )  (3.14) 

in which the plane of the inner frame is vertical, coinciding with the plane of the outer frame, and the 
Oz axis of the rotor points vertically upwards. To the second solution there corresponds an analogous 
GSM with the Oz axis pointing vertically downwards. 

The function Wo(t, O, Co) = W(t, O, Co) - W(t, O, Co) is positive-definite with respect to 0, OWo(t, O, 
c)/Ot <~ 0 under the conditions 

Cob(t) - Mgzo + D~2(t)/> v 0 = const > 0 (3.15) 

ql(t)(c + 2D~t(t)) ~< 0 

f o r c :  Ic-c01 < > 0. 
By Theorem 3.1, we conclude that the GSM (3.14) with c = Co which satisfies conditions (3.15) is 

uniformly stable with respect to 0, 0, (0 and uniformly attractive relative to perturbed motions with 
C = C  O. 

It follows from conditions (3.15) that ~(t) --~ 40 = const as t ---) +oo. Therefore, the limit GSMs are 
ordinary steady motions of the gyroscope for the case ~ = ~t 0 = const, whose existence and stability 
were investigated in detail in [23] (see also [25]). By previous results [23, 25] and Theorem 3.1, we 
find that for values o f c  : Ic - c01 < 5 > 0 every perturbed motion tends, as t ~ +oo, to the steady 
motion 

0 = 0 ,  0 = 0 ,  f ~ = c / C - ~  o (3.16) 

One can also investigate the limiting behaviour in the large of motions for which c = Co satisfies 
conditions (3.15) directly, using a theorem proved in [21] on the localization of the positive limit set. 

If 

[CoCo - Mgzo I>1 DIdo 2 (3.17) 

then every corresponding motion of the gyroscope tends, as t ~ +o% either to the motion (3.16) or to 
the motion 

c 
o=o, o==, v=- +Vo 
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If the inequality sign in (3.17) is reversed, then, besides these limiting motions, one must also add 
the steady motion 

Co (~=0 ,  0 = 0 0 ,  c o s 0 0 = - c ° ~ I ° - . M ~  g z ° ,  ~ / = - - ~ - ~ I / 0 c o S 0  0 
( . ,  
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